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Abstract This paper develops moment formulas for exponentially tempered, fractional
advection-diffusion equations (TFADEs) that transition from anomalous to asymptotic dif-
fusion limits over time. Exact analytical expressions or series representations for spatial
moments up to the fourth order are derived by integral transform or asymptotic expansion
approach. A fully Lagrangian solver, cross verified by an implicit Eulerian approach, is also
developed to calculate numerically the complete evolution of moments for the TFADEs with
complex initial and boundary conditions. Moment analysis identifies the diffusion equation
that attracts the tempered anomalous diffusion in the long time limit. Fitting of moments
measured at two end members of alluvial systems checks the applicability of moment analy-
sis in understanding real diffusion.
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1 Introduction

Fractional-derivative models have been increasing in popularity in the last decade for char-
acterizing anomalous diffusion in almost all natural systems [44–46]. For example, in the
hydrology science, the fractional-derivative models have been developed to describe anom-
alous diffusion for contaminant transport through heterogeneous porous or fractured media
[11, 27, 31, 62]. In particular, the scaling limit of the continuous time random walk (CTRW)
with a jump distribution function φ(x) ∼ x−(1+α) (1 < α < 2) produces the superdiffusive
transport model. The stable Lévy distribution for particle displacement contains arbitrarily
large jumps and has divergent spatial moments higher than the first order. Fast transport
events are well documented, but an unlimited power-law density (without any natural cut-
off) and the resultant infinite moments may not be feasible for some physical processes
[7, 38–40, 42, 43]. For example, for contaminant transport in natural geological formations,
the arbitrarily large displacements for contaminants may not be feasible due to the typically
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finite water velocity, the possible decorrelation in particle trajectories along preferential flow
paths [10], and/or the unavoidable scale of heterogeneity [58], which all can lead to a recti-
fiable sample path for solute particle during one single jump.

The truncated Lévy process is the logic extension of the standard Lévy process to capture
the convergent spatial moments and the natural cutoff of power-law distributions present in
real physical systems. The truncated stable Lévy flights proposed first by Mantegna and
Stanley [38, 39] discard large jumps directly [37]. Exponentially tempered stable processes
were then proposed by Koponen [33] and Boyarchenko and Levendorskiǐ ([5], Chap. 3) as
a smoother alternative without a sharp cutoff. The resultant Lévy motion models, which are
known as KoBoL processes (from Koponen, Boyarchenko and Levendorskiǐ) in the math-
ematical finance community [6, 9, 28, 41], cool arbitrarily large movements (such as the
stock price movements) and therefore ensure finite moments (see page 71 in [5] and page 56
in [54]). Exponentially tempered Lévy motion models have drawn attention recently in the
statistical physics as well as the applied mathematics community [2, 10, 52], probably due
largely to the tractability of the tempered process. The tempered process remains an in-
finitely divisible Lévy process whose governing equation can be identified [54], and its
transition densities can be computed at any scale [2].

This study continues previous efforts in moment analysis by developing moment for-
mulas for novel tempered models. Systematical analysis of moment evolution helps to un-
derstand the nature of physical processes and identify the long time limit of the tempered
anomalous diffusion. We then expand the application to ground water hydrology by simulat-
ing real-world evolution of moments measured in solute transport processes. Such detailed
comparison with field measured moment data has been limited in literature.

The rest of the paper consists of five sections. The appropriate physical models are first
built in Sect. 2, by extending the tempered fractional-order advection-diffusion equation
(TFADE) proposed in above literature. In Sect. 3, the asymptotic expansion approach is ap-
plied to derive the series representations of moments up to the fourth order (including mass,
mean, variance, skewness and kurtosis) for the extended TFADEs containing both space
and time fractional derivatives. Numerical approaches are then developed in Sect. 4 to ap-
proximate the complete growth of spatial moments for the TFADEs. The extended TFADE
models and the corresponding spatial moments are then checked against field observations
in heterogeneous porous media in Sect. 5. Conclusion is drawn in Sect. 6.

2 The Tempered Fractional-Order Advection-Diffusion Equation Model

Various versions of fractional-derivative models have been developed to describe different
physical processes. The physical model based on fractional dynamics and describing solute
transport in natural systems can be built by following the space-time fractional-order partial
differential equation (FPDE) proposed by Cartea and del-Castillo-Negrete [10]

0 Dγ
t P (x, t) = −[V + Dαθλα−1]∂xP (x, t) − DDα,λ

x P (x, t) − DλαP (x, t), (1)

which is the scaling limit of the continuous time random walk with exponentially truncated
Lévy jump distributions. Here the symbol 0 Dγ

t denotes the γ -order (0 < γ < 1) Caputo frac-
tional derivative in time t , V [LT −1] is the velocity, D [LαT −1] is the fractional dispersion
coefficient, λ [L−1] is the truncation parameter, α [dimensionless] (1 < α < 2 in this study)
is the order of the stable density in space, −1 ≤ θ ≤ 1 [dimensionless] is the skewness co-
efficient of the Lévy density, and Dα,λ

x denotes the truncated fractional derivative operator.
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Dα,λ
x is defined as

Dα,λ
x = le−λx−∞Dα

x eλx + reλx
x Dα

∞e−λx, (2)

where l = − (1+θ)

2 and r = − (1−θ)

2 . −∞Dα
x and x Dα∞ denote the Riemann-Liouville fractional

derivatives:

−∞Dα
x f = 1

Γ (2 − α)

∂2

∂x2

∫ x

−∞

f (y)

(x − y)α−1
dy, (3a)

x Dα
∞f = 1

Γ (2 − α)

∂2

∂x2

∫ ∞

x

f (y)

(y − x)α−1
dy. (3b)

The above fractional derivatives are space nonlocal operators of convolution type [47, 50].
The value of the left-handed fractional derivative (3a) at a local point x depends on the
function values at all the points in the interval (−∞, x) (i.e., the space left of x), while the
value of the right-handed fractional derivative (3b) at x depends on the function values in
the interval (x,∞) (the right domain). Also note that the left hand side term 0 Dγ

t in (1)
captures the subdiffusive effect. When subdiffusion does not exist, γ = 1 and the FPDE
(1) reduces to the KoBoL model [9, 41]. The FPDE (1) is also a tempered, fractional-order
advection-diffusion equation. To distinguish it from the other TFADEs developed below,
we name (1) as the original TFADE. High order spatial moments such as skewness and
kurtosis (which measure the deviation from Gaussian and identify the non-Gaussian shape
of anomalous diffusion) for model (1) have not been derived before. This study provides
first the exact formula and evolution behavior of all moments up to the fourth order for (1)
(see Appendix A), which can be compared to the moments for the other TFADEs discussed
below.

Two critical modifications of the original TFADE (1) are needed to capture real-world
solute transport. Firstly, the maximally skewed Lévy density is needed (i.e., θ = 1 in (2) to
capture fast motions of solute particles in fractal media, similar to the FMLS (finite moment
log stable) process [8]. The modification results in the following TFADE model:

∂γ C(x, t)

∂tγ
= −V

∂C(x, t)

∂x
+D

{
e−λx ∂α[eλxC(x, t)]

∂xα
−αλα−1 ∂C(x, t)

∂x
−λαC(x, t)

}
, (4)

where C [ML−3] is the density or solute concentration in ground water hydrology. The
Caputo fractional derivative for time is used in the following (unless specified), considering
its convenience over the Riemann-Liouville derivative [22, 50]. Derivation of (4) with γ = 1
can be found in [2], where the tempered stable was defined simply as the multiplication of
the Lévy measure and an exponential function exp(−λx).

Model (4) contains a single-side (left-handed) space fractional derivative that simplifies
the symmetric Riesz-Feller space-fractional derivative ∂α/∂|x|α (for example, see (2) in [34]
and (55) in [53]) and the asymmetric two-side fractional derivative used in (1). The physi-
cal reason for choosing the maximum skewness coefficient (θ = 1) has been discussed by
various researchers in the hydrology community (see [26, 32, 55, 60], among many others).
Here we introduce the discussion briefly, to provide background. The probability for a solute
particle to jump forward is (1+θ)/2, while the backward jump probability is (1−θ)/2 [55].
The skewness coefficient θ is equal to 1 when solute disperses preferentially at velocities
ahead of the mean velocity [55, 60]. Large tracer jumps only occur downward in natural
media under ambient flow conditions. For example, natural rivers and streams may contain
various forms of small-scale reverse flows (induced for example by bends and pools, side



918 Y. Zhang

pockets, zones between dikes, and/or turbulent eddies), but there is typically no large-scale
backward dispersion for a solute particle to return to the upper boundary far away from its
current location [62]. In other words, the concentration change at a local point should not
depend on the net dispersive flux far away downstream, and hence the right-handed frac-
tional derivative (3b) does not apply here. This was confirmed by the analysis of velocity
distributions in [26, 32]. Strictly speaking, the contaminant transport through natural media
tends to exhibit the maximum skewness due to the fast transport of solute through prefer-
ential flow paths at all scales [60]. The maximum skewness is also consistent to the space
nonlocal dispersive flux used by the nonlocal dispersive constitutive theories proposed by
the fluid mechanics community [16, 17]. In addition, when λ → 0 (i.e., without trunca-
tion) and γ = 1 (i.e., no subdiffusion), model (4) reduces to the standard space-fractional
advection-diffusion equation

∂C(x, t)

∂x
= −V

∂C(x, t)

∂x
+ D

∂αC(x, t)

∂xα
, (5)

which is the long-time limit of the CTRW where fast particle motions have a power-law
probability density function. The derivation and underlying physical meaning of model (5)
were shown for details in the extensive review in [62]. While sampling natural media, solute
particles experience various velocity zones. A smaller value of the index α indicates a
broader distribution of high velocity zones (ahead of the mean), indicating a more highly
heterogeneous medium. Model (5) was used to capture the anomalous transport of conserv-
ative tracers through unsaturated soils [49, 59], saturated porous media [11, 27, 63], streams
and rivers [31], and overland flow [19]. As a conclusion of the above review, the selection
of a single-side space fractional-derivative model has been found physically reasonable for
solute transport processes.

The second necessary modification of model (1) is the time drift term added on the left
hand side of (1) in order to distinguish the solute particle state (in mobile or immobile
phases, see (7)). Such improvement is analogous to the time drift term shown in the com-
posite fractional relaxation equation (see (4.1) in [22]). In some physical processes such
as contaminant transport in ground water, the subdiffusive effect due to mass exchange be-
tween mobile and relatively immobile phases is almost ubiquitous [24]. The following time-
fractional advection-diffusion equation (ADE) models, proposed first by Schumer et al. [56]
and applied extensively by hydrologists (see the review in [62]), employ stable waiting times
to create a subdiffusive effect:

(
∂

∂t
+ β

∂γ

∂tγ

)
CT = −LxCT , (6a)

(
∂

∂t
+ β

∂γ

∂tγ

)
Cm = −LxCm − β

t−γ

Γ (1 − γ )
Cm(x, t = 0). (6b)

Here CT and Cm denote the solute concentration in the total (mobile plus immobile) phase
and the mobile phase, respectively, β [T γ−1] is the fractional capacity coefficient, the scale
index γ [dimensionless] (0 < γ < 1) controls the power-law distribution of waiting times,
Γ is the gamma function, and Lx denotes the advection-diffusion operator. The initial con-
dition Cm(x, t = 0) > 0 defines the initial contamination placed only in the mobile zone, to
represent typical tracer tests and real-world contamination [56]. Physically, the model (6)
assumes a distribution of kinetic rates (first-order reversible kinetic sorption into low veloc-
ity zones). A smaller value of the index γ indicates a more strongly heterogeneous set of
immobile zones.
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If Lx takes the advection-diffusion operator defined in model (4), we obtain the extended
and novel TFADE model for the total phase

(
∂

∂t
+ β

∂γ

∂tγ

)
CT = −V

∂CT

∂x
+ D

{
e−λx ∂α

∂xα
[eλxCT ] − αλα−1 ∂CT

∂x
− λαCT

}
, (7)

and the mobile phase

(
∂

∂t
+ β

∂γ

∂tγ

)
Cm = −V

∂Cm

∂x
+ D

{
e−λx ∂α

∂xα
[eλxCm] − αλα−1 ∂Cm

∂x
− λαCm

}

− βt−γ Cm(x, t = 0)

Γ (1 − γ )
. (8)

To distinguish from the original TFADE model (1), we name models (7) and (8) as the
TFADE-Total and TFADE-Mobile, respectively. When α = 2, the above extensions reduce
to the fractal mobile/immobile model proposed by Schumer et al. [56].

Spatial moments for both models (7) and (8) are derived below. For applications such as
ground water sampling in real aquifers, the distinction of particle phases is necessary since
samples can be collected preferentially from mobile water [24, 56, 62]. Examples are given
in Sect. 5.

3 Spatial Moments for the Extended TFADEs

3.1 The TFADE-Total Model (7)

The solution of (7) in Fourier (k) and Laplace space (s) is

ˆ̃
CT (k, s) = 1 + βsγ−1

s + βsγ + V ik − D[(λ + ik)α − λα − ikαλα−1] ĈT (k,0), (9)

where the symbol hat denotes Fourier transform, and the symbol tilde denotes Laplace trans-
form.

Following the integral transform scheme discussed in Appendix A, we obtain the solute
particle mass for model (7) using (9)

MT (t) = ϑ = θm/θT , (10)

where the subscript “T ” denotes the total phase, ϑ denotes the initial mass in the total phase,
and θm and θT denotes the effective porosity in the mobile and total phase, respectively. The
porosity term appears since we assume that particles are located initially in the mobile phase
only (with unit mass).

No exact real-time analytical expressions can be obtained for higher order moments about
the origin. Alternatively, we use the asymptotic expansion method to expand the moments
about the origin in Laplace space, and then take the inverse Laplace transform to get the ap-
proximation in real time. For example, the second-order moment about the origin in Laplace
space is

μ̃2,T (s) = 2V 2ϑ

s(s + βsγ )2
+ Dϑα(α − 1)λα−2

s(s + βsγ )
, (11)
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where μ denotes the moment about the origin, the first suffix “2” denotes the order of the

moment, and the second suffix “T ” denotes the total phase. For |βsγ−1| < 1 (or s > β
1

1−γ ,
representing a small real time tearly), we can expand (11) to a series representations, which
has the following inverse Laplace transform

μ2,T (tearly) ≈ 2V 2ϑ

N∑
n=0

(−1)n(n + 1)βnt(1−γ )n+2

Γ [(1 − γ )n + 3]

+ Dϑα(α − 1)λα−2
∞∑

n=0

(−1)nβnt(1−γ )n+1

Γ [(1 − γ )n + 2] . (12)

Similarly, for |(1/β)
1

1−γ s| < 1 (or s < β
1

1−γ , representing a large time tlate), we obtain the
late-time approximation

μ2,T (tlate) ≈ 2V 2ϑ

N∑
n=0

(−1)n(n + 1)β−n−2 t (γ−1)n+2γ

Γ [(γ − 1)n + 2γ + 1]

+ Dϑα(α − 1)λα−2
∞∑

n=0

(−1)nβ−n−1 t (γ−1)n+γ

Γ [(γ − 1)n + γ + 1] . (13)

The resultant spatial moments higher than the zeroth order therefore have series repre-
sentations. In the following we show only the dominant terms for each moment, so that their
behavior at very small or large time can be evaluated conveniently. The applicability of all
these dominant terms will be tested in Sect. 5. The mean displacement grows as

ET (tearly) ≈ V t, (14a)

ET (tlate) ≈ Vβ−1tγ Γ1 (14b)

and the variance can be approximated by

σ 2
T (tearly) ≈ Dα(α − 1)λα−2t, (15a)

σ 2
T (tlate) ≈ V 2β−2t2γ [2Γ2 − (Γ1)

2] + Dα(α − 1)λα−2β−1tγ Γ1. (15b)

Here Γi = 1/Γ (iγ + 1) with i = 1,2, . . . denotes a factor depending only on γ . The second
term on the right hand side (RHS) of (15b) is the dominant term (n = 0) of the 2nd series
representation in (13). Numerical analysis shows that this term can contribute significantly
to σ 2

T (tlate) if λ is small and t is not reaching infinity.
The skewness of plume in the total phase can be approximated by

ST (tearly) ≈ 2 − α

[Dα(α − 1)]1/2λα/2
t−1/2, (16a)

ST (tlate) ≈ {
V 3β−3t3γ [6Γ3 − 6Γ2Γ1 + 2(Γ1)

3] + V Dα(α − 1)λα−2β−2t2γ

× [6Γ2 − 3(Γ1)
2] − Dα(α − 1)(α − 2)λα−3β−1tγ Γ1

}[
σ 2

T (tlate)
]−3/2

, (16b)

and the kurtosis of plume in the total phase can be approximated by

κT (tearly) ≈ (α − 2)(α − 3)

Dα(α − 1)λα
t−1, (17a)
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κT (tlate) ≈ {V 4β−4t4γ [24Γ4 − 24Γ3Γ1 + 12Γ2(Γ1)
2 − 3(Γ1)

4] + V 2DRβ−3t3γ

× [36Γ3 − 24Γ2Γ1 + 6(Γ1)
3] + β−2t2γ [(6D2R2 − 8V DQ)Γ2 + 4V DQ(Γ1)

2]
+ QD(α − 3)λ−1β−1tγ Γ1}[σ 2

T (tlate)]−2 − 3, (17b)

where R = α(α − 1)λα−2 and Q = α(α − 1)(α − 2)λα−3.
Note that the early and late time approximations for each moment can also be derived by

Karamata’s Tauberian theorem [20] (see Appendix B). The early and late time approxima-
tions derived in this study have been cross verified by Karamata’s theorem.

3.2 The TFADE-Mobile Model (8)

The same asymptotic expansion approach is used to derive the spatial moments for the
TFADE-Mobile model (8). The approximated mobile mass Mm decreases in time:

Mm(tearly) ≈ 1 − βt1−γ /Γ (2 − γ ), (18a)

Mm(tlate) ≈ β−1tγ−1/Γ (γ ). (18b)

The mean displacement Em grows as

Em(tearly) ≈ V t, (19a)

Em(tlate) ≈ Vβ−1tγ Γ ∗
1 . (19b)

where the factor Γ ∗
i = Γ (γ )/Γ [(i + 1)γ ] (here i = 1) is a function of γ .

The variance of mobile phase plume σ 2
m at the very small and large time increases as

σ 2
m(tearly) ≈ Dα(α − 1)λα−2t, (20a)

σ 2
m(tlate) ≈ V 2β−2t2γ [2Γ ∗

2 − (Γ ∗
1 )2] + Dα(α − 1)λα−2β−1tγ Γ ∗

1 . (20b)

The skewness (Sm) approximation is

Sm(tearly) ≈ 2 − α

[Dα(α − 1)]1/2λα/2
t−1/2, (21a)

Sm(tlate) ≈ {V 3β−3t3γ [6Γ ∗
3 − 6Γ ∗

2 Γ ∗
1 + 2(Γ ∗

1 )3] + V Dα(α − 1)λα−2β−2t2γ

× [6Γ ∗
2 − 3(Γ ∗

1 )2] − Dα(α − 1)(α − 2)λα−3β−1tγ Γ ∗
1 }

× [σ 2
m(tlate)]−3/2. (21b)

Finally, the Kurtosis κm grows as

κm(tearly) ≈ (α − 2)(α − 3)

Dα(α − 1)λα
t−1, (22a)

κm(tlate) ≈ {V 4β−4t4γ [24Γ ∗
4 − 24Γ ∗

3 Γ ∗
1 + 12Γ ∗

2 (Γ ∗
1 )2 − 3(Γ ∗

1 )4] + V 2DRβ−3t3γ

× [36Γ ∗
3 − 24Γ ∗

2 Γ ∗
1 + 6(Γ ∗

1 )3]
+ β−2t2γ [(6D2R2 − 8V DQ)Γ ∗

2 + 4V DQ(Γ ∗
1 )2]

+ QD(α − 3)λ−1β−1tγ Γ ∗
1 }[σ 2

m(tlate)]−2 − 3. (22b)
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3.3 Discussion

The above moment approximations reveal interesting information about the dynamics of
tempered anomalous diffusion. Firstly, we check the similarity and distinction of moments
for particles in different phases. At early time, particle plumes captured by either the
TFADE-Total model (7) or the TFADE-Mobile model (8) exhibit the same mean, variance,
skewness and kurtosis (see for example, (14a) and (19a)). These similarities confirm that
most of the particles are in mobile phase at early time, since the initial source is assumed
to be in the mobile phase. During this early period, the moments (except for the mass)
of the extended TFADEs are also the same as those of (37), a simplified TFADE. At a very

small time tearly < β
1

γ−1 , the contribution of the time-advection term ∂C/∂t is larger than the
time-diffusion term β∂γ C/∂tγ [56]. Hence the extended models (7) and (8) return roughly

to model (37) and generate the same spatial moments. The number β
1

γ−1 (with unit [T ])
provides a rough indication of the time before which the early-time moment approximations
in Sects. 3.1 and 3.2 can be used.

When time grows, the loss of mobile particles due to the trapping in the immobile phase
is felt gradually by spatial moments, resulting in the subtle difference of moments higher
than the zeroth order for solutes in different phases. These moments only differ by their
factors Γi and Γ ∗

i , for plumes in different phases (i.e., comparing (15b) with (20b)). At a

late time tlate � β
1

γ−1 , the term β∂γ C/∂tγ contributes more than the term ∂C/∂t in the
TFADE-Total model (7). Hence the model (7) with β = 1 reduces to the original TFADE
model (1) with θ = 1. This can also be verified by the similarity of their moments. When
β = 1 and θ = 1, the late-time approximations of moments for the TFADE-Total model (7),
as expressed by (14b), (15b), (16b) and (17b), are equal to moments for the original TFADE
(1) expressed by (36b), (36c), (36d) and (36e), respectively.

Secondly, the above moment formulas show that caution is needed when evaluating the
sub- and super-diffusion defined in terms of the second moment. The first and second terms
on the RHS of (20b) relate to advection and diffusion, respectively. If the contribution from
the advective component dominates and γ > 0.5, then the transport is superdiffusive (where
σ 2

m(tlate) ∝ t2γ ). If γ < 0.5, the transport process is always subdiffusive at late time, regard-
less of the relative contribution of advection and diffusion. In all cases, the mean displace-
ment of solutes always grows slower than the normal diffusion, as shown by (14b) and (19b).
It is also noteworthy that, when time t → ∞, the first term on the RHS of (16b), (20b) and
(21b) dominates. The skewness therefore approaches to a positive constant. Similar behav-
ior can be found for kurtosis, which approaches to a relatively larger and positive constant.
These two constants depend only on γ and are not zero unless γ = 1. This reveals again the
slow convergence of tempered anomalous diffusions to asymptotic diffusion limits.

Finally, we find that the following time-fractional ADE attracts the tempered anomalous
diffusion governed by the TFADE-Total model (7) in the long time limit t → ∞

∂γ C(x, t)

∂tγ
= −V

β

∂C(x, t)

∂x
+ Dα(α − 1)λα−2

2β

∂2C(x, t)

∂x2
+ t−γ C0(x)

Γ (1 − γ )
. (23)

It has the same mean and variance (which have exact analytical expressions) as the late-time
approximations of the TFADE-Total model (7). By comparing the skewness approximation
(17b) with the analytic skewness for the limit model (23), we find that the crossover time τc

from the tempered anomalous diffusion to its asymptotic limit scales as τc ∼ β
1
γ λ

− α
γ D

− 1
γ .

When β = 1, (23) also attracts the tempered process defined by the original TFADE (1) with
the maximum skewness coefficient as time goes to infinity.
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It is also noteworthy that the extended TFADEs (7) and (8) themselves may be lack of
ergodicity, while the standard fractional-order advection-diffusion equation (without tem-
pering) was found to be ergodic by Schumer et al. [55]. A stochastic process is “ergodic”
if the distribution of the underlying random walk reaches some limit that does not depend
on its initial conditions [20]. For a standard FADE, the ergodic condition is assumed to be
produced by plume evolution following any one of the many limiting, stable distributions.
Strict mathematical arguments, however, remain to be shown for the standard FADE, where
the central limit theory may be used. The standard FADE with variable coefficients can be
approximated by a Markov process, as shown for example by Zhang et al. [60]. The ergod-
icity can be reached only if the underlying diffusion process (i.e., solution to the stochastic
differential equation dx(t) = a(x)dt + b(x)dB(t), where a(x) denotes the local drift, b(x)

is a function defining the dispersion strength, and dB(t) is a standard Lévy stable noise) can
converge to a constant coefficient FADE. Additional arguments are needed for the tempered
FADE models. For example, both the statistics of parameters a(x) and b(x) and the scaling
leading to the tempered stable remain to be shown. This topic is beyond the scope of this
work and will be the focus of a future study.

4 Numerical Solution of Spatial Moments for the TFADE Models

Exact analytical expressions and series representations derived above reveal clearly the evo-
lution of spatial moments in time. In real applications, however, more complex initial and/or
boundary conditions can appear, which are beyond the capabilities of analytical or approxi-
mation methods. In addition, the approximation of moments for the extended TFADE mod-
els developed in Sect. 3 does not cover the whole time period. The intermediate behavior
of moments may be important for real physical processes. The two limitations motivate the
development of numerical solutions of moments.

The fractional-order partial differential equations were solved by various numerical
methods in the last decade, see the review by Zhang et al. [61] and references cited therein.
The fully Lagrangian approach is relatively new [13, 23, 30, 36], but it is the only viable tool
for solving vector FPDEs with a general mixing measure [61]. To approximate simultane-
ously the solutions of the two extended TFADE models (7) and (8), we build the following
four-step Lagrangian scheme.

Step 1 Decompose the TFADE-Total model (7) into a hitting time process

∂h(τ, t)

∂τ
= − ∂

∂t
h(τ, t) − β

∂γ

∂tγ
h(τ, t) (24)

and a motion process

∂

∂τ
u(x, τ ) = −V

∂u(x, τ )

∂x
+ D

{
e−λx ∂α

∂xα
[eλxu(x, τ )]

−αλα−1 ∂u(x, τ )

∂x
− λαu(x, τ )

}
, (25)

following the argument in [61]. The initial condition for the hitting time process (24) is
h(τ = 0, t) = δ(t) + β t−γ /Γ (1 − γ ). Here τ [T ] is the operational or mobile time, and t

[T ] is the real or clock time.
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Step 2 Solve the hitting time process (24) to transfer τ to t . Following the argument in
Zhang et al. [61], we derive the generalized Markovian process in the domain of real time t

dTi = a1dτi + a2

[
β cos

πγ

2
dτi

]1/γ

Si(β
∗ = +1, σ ∗ = 1, μ� = 0, γ ), (26)

where dTi is the total time spent by the particle during the i-th jump, dτi is the mobile time
step, and Si is a standard γ -stable random variable (with skewness β∗ = +1, scale σ ∗ = 1,
and shift μ� = 0). The two factors a1 and a2 enhance the flexibility of the Lagrangian solver.
When a1 = a2 = 1, the solver is for the extended TFADE models (7) and (8). When a1 = 0
and a2 = 1, it solves the time fractional ADE (23). When a1 = 1 and a2 = 0, it solves the
simplified TFADE (37) derived by Baeumer and Meerschaert [2]. Note that the first term on
the RHS of (26) represents the motion time, while the second term denotes the waiting time.
The real time ti hence can be calculated by

ti =
i∑

j=1

dTj . (27)

Step 3 Calculate the jump size at each time step by solving the motion process (25). The
corresponding particle movement at the i-th jump contains a drift term and a truncated
diffusion length, which can be written as

dXi = (V + Dαλα−1)dτi + dξi, (28)

where the term Dαλα−1dτi corrects the mean displacement due to the truncation of α-stable
Lévy distribution. The noise dξi can be generated using the exponential rejection method
proposed by Baeumer and Meerschaert [2]. Particularly, one can calculate dξi using

dξi =
[
− cos

πα

2
Ddτi

]1/α

Si(β
∗ = +1, σ ∗ = 1,μ = 0, α). (29)

Then the value of dξi needs to be evaluated by the criterion

dξi ≤ Expi , (30)

where Expi is an exponentially distributed random variable with mean 1/λ (inverse of the
truncation parameter), and it can be generated by

Expi = − ln(Ui)

λ
, (31)

where Ui is distributed uniformly on (0,1). If dξi > Expi , then we reject it and re-generate
dξi using (29) and Expi using (31), until the criterion (30) is met.

Step 4 Calculate the particle position Y at real time ti via the relationship

Y (ti) =
i∑

j=1

dXj . (32)

The distinction between the mobile and immobile states for each particle is convenient.
For the time between dTi−1 and dTi−1 + dτi (where dTi−1 is the time at the last jump), the
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Fig. 1 (a) Lagrangian solutions (symbols) versus the analytical solutions (lines) of moments for the simpli-
fied TFADE model (37). Model parameters are: α = 1.2, λ = 0.01, V = 0.5, D = 1, and λ = 0.01. (b) Con-
vergence speed of skewness and kurtosis due to the truncation parameter λ

particle is in motion; for the remaining time (from dTi−1 + dτi to dTi ), the particle is in the
immobile state. Hence the two equations (7) and (8) can be solved during one simulation.

To cross verify the above Lagrangian scheme, an implicit Eulerian finite difference solver
is also developed (see Appendix C). See Appendix C and the next section for verification
of the above Lagrangian scheme. After the TFADEs are solved, spatial moments can be
calculated easily given the spatiotemporal distribution of particles.

5 Numerical Examples and Field Applications

5.1 Numerical Examples

We first check the Lagrangian numerical results against the analytical solutions of moments
for the simplified TFADE model (37) derived in Appendix A. One example is shown in
Fig. 1a, where the Lagrangian solution generally matches the analytical solution (38). The
positive values of high order moments, including skewness and kurtosis, exhibit the slow
and smooth convergence of the tempered anomalous diffusion to Gaussian statistics. Fig-
ure 1b shows that the truncation parameter λ affects significantly the rate of transition from
anomalous diffusion to asymptotic diffusion limit. As λ gets larger (and α and D remain un-
changed), the anomalous large jumps decrease and therefore the transition from anomalous
to normal diffusion is relatively faster.

The next example (Fig. 2) shows moments for the extended TFADE model (7). The La-
grangian approach provides the full time evolution of spatial moments, where the early and
late time portions generally match the series representations derived in Sect. 3. Analytical
solutions of moments for the asymptotic diffusion equation (23) are also shown for compar-
ison (see the dashed lines in Fig. 2). Eventually, the moments of (7) should converge to the
dashed lines, while the truncation parameter λ affects the convergence speed. Because β = 1

in this example, the early-time approximations derived in Sect. 3 are valid for t < β
1

γ−1 = 1.

On the other hand, the late-time approximations are generally valid at a large time t � β
1

γ−1 .
Finally, we check the moments for particles in different phases, where the particle dy-

namics is governed by the TFADE-Total model (7) and the TFADE-Mobile model (8), re-
spectively. The mobile-phase plume has similar moments as the plume in the total phase at
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Fig. 2 Lagrangian solutions (symbols) versus the series representations (dots or solid lines) of spatial mo-
ments for the TFADE-Total model (7) (except for the mobile mass, which is the solution of TFADE-Mobile
(8) for the mobile phase). The dotted and solid lines are series representations at early and late times, re-
spectively. Model parameters are: α = 1.5, γ = 0.1, β = 1, V = 1.3, D = 2.8, and λ = 0.1 (circles) and
0.01 (triangles), respectively. Analytical solutions of moments for (23) are also shown (dashed lines) for
comparison

early time (Fig. 3). Then the mobile mass declines apparently, and the mobile-phase plume
moves relatively faster downstream (than the particles in the immobile phase) and separates
gradually from the plume trapped in the immobile zones (see also Fig. 9b in Appendix C).
Therefore, at late times, the mobile-phase plume has a relatively larger mean and variance
for displacement, and a relatively smaller skewness and kurtosis, than those of the total-
phase plume. This is consistent with the series representations derived in Sect. 3.
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Fig. 3 Lagrangian solutions of
the spatial moments for the
TFADE-Total model (7) (total
phase, solid lines) and the
TFADE-Mobile model (8)
(mobile phase, dashed lines).
Model parameters are: α = 1.5,
γ = 0.5, β = 1, V = 1.3,
D = 2.8, and λ = 0.01. Note the
initial mass is 1

5.2 Field Application 1—MADE Site

Contaminant transport through porous media can experience the transition from anomalous
diffusion to local limits, as shown by the pioneering work in the fluid mechanics commu-
nity (see for example [16, 17, 48]). This motivated us to apply the TFADE model to capture
real transport processes in natural porous media. Natural gradient tracer (bromide) tests con-
ducted at the MAcroDispersion Experiments (MADE) at Columbus, MS [1, 3, 4, 51], one
of the most intensively studied sites in North America, exhibit complex diffusion in the
highly heterogeneous alluvial aquifer/aquitard system. For almost two decades, the hydrol-
ogy community has developed numerous numerical models and various transport theories
to explain the MADE-site bromide plumes (see the extensive review in [62]), but the effi-
cient transport model that can capture the measured spatial moments is rather limited. We
find that the measured spatial moments (Fig. 4) favor the application of the TFADE-Mobile
model (8). For example, the mobile mass data (Fig. 4a) declines as power-law when time
increases, matching the trend revealed by formula (18b). The mean displacement of solutes
increases slower than linear, suggesting also the subdiffusive effect due to the trapping in
aquitards (see also (19b)). The plume variance evolves irregularly in time, where the noise
is probably due to the irregular variation of detection length at different sampling cycles [1].
Finally, the skewness and kurtosis are much larger than zero, suggesting persistent preas-
ymptotic transport behavior that can be captured by the TFADE model. Geological data
also support the application of a tempered Lévy motion model. For example, the distribu-
tion of the measured hydraulic conductivity (K) transitions from power-law to exponential
(Fig. 5), implying that the MADE site may not have infinite velocity or a purely power-law
distributed solute movement.

The above measurements motivated the application of the TFADE-Mobile model (8) to fit
the moment data. The numerical approach is needed to incorporate the influence of limited
detection lengths on spatial moments. First, bromide mass fraction (Fig. 4a) is fitted to obtain
the parameters γ (which is 0.35) and β (0.08 day−0.65) (as revealed by (18)). Next, the fit
of the mean displacement of plumes provides velocity V (= 0.17 m/day), which follows
the field measurements (0.12 < V < 0.36 m/day). Finally, the fit of the plume variance
(Fig. 4c) provides the diffusion coefficient D (0.35 mα /day) and the truncation parameter λ

(0.005 m−1). The index α (1.1) can be fitted by either the variance data, or the distribution
of K (the details for latter can be found in [62]). Hence all parameters in model (8) can
be fitted based on the first three moments, leaving the skewness and kurtosis measurements
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Fig. 4 The best-fit moments (the black line) using the TFADE-Mobile (8) versus the measured moments
(circles) at the MADE site. The initial mass is 5, based on Harvey and Gorelick [25]. The grey line denotes
the best-fit of the classical 2nd-order ADE, where both the skewness and kurtosis are 0

as verification targets (Fig. 4d, e). Note the classical 2nd-order ADE can also be fitted by
the measured mean and variance (see the grey line in Fig. 4b, c), but it underestimates
significantly the skewness and kurtosis. Also note that the sampling cycles of this experiment

(10 ∼ 500 days) are around the specific time β
1

γ−1 = 49 days, an intermediate period that
requires the numerical solver for moment calculation.

Model (8) with the best-fit parameters is further applied to check against the observed
plume snapshots (Fig. 6). We also test the influence of λ on the leading edge of bromide
plumes. A relatively large λ tends to underestimate the leading edge of bromide plumes.

5.3 Field Application 2—Cape Cod Site

Bromide transport has also been monitored during a natural gradient tracer test conducted at
the well-known Cape Cod site, Massachusetts [21, 35]. Glaciofluvial deposits with stratified
sand/gravel and minor silt/clay form the unconfined aquifer. The ln(K) variance is as small
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Fig. 5 The measured (circle)
and the best-fit (solid line)
hydraulic conductivity (K)
distribution at the MADE site

Fig. 6 Predicted (black lines with λ = 0.005) (using model (8) and parameters fitted in Fig. 4) versus mea-
sured (symbols) bromide concentrations from the MADE site at the sampling cycle at day 202 (a), 370 (b),
and 503 (c), respectively. (d), (e), and (f) are the log-log plot of (a), (b), and (c), respectively. The unit of λ is
m−1. A much larger λ = 0.1 is also shown for comparison

as 0.26, representing an end-member (“homogeneous”) of alluvial systems, compared to the
heterogeneous MADE site (where the variance of ln(K) is 4.5). The first three moments
were measured (Fig. 7), and the best-fit parameters using model (8) are: γ = 0.90, β =
0.01 day−0.1, V = 0.45 m/day, α = 1.95, D = 0.3 m1.95/day, and a relatively large truncation
parameter λ = 0.02 m−1. The best-fit velocity is within the range of field measurements
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Fig. 7 Measured (symbols) versus fitted Cape Cod Bromide spatial moments (zeroth to the second orders)
using the TFADE-Mobile model (8). (a) mass, (b) mean travel distance versus the variance of displacement.
Solutions of the classical 2nd-order ADE are added for comparison. In (a), the best-fit mobile mass using (8)
is almost identical to the solution of the classical 2nd-order ADE. (c) and (d) show the predicted skewness
and kurtosis, respectively, where there were no measured data. Note the noise of moments in (c) and (d) at
early time (<90 days) is due to the irregular detection length

(0.39 ∼ 0.51 m/day [21]). There are no measurements for skewness and kurtosis, and we
only list predictions in Fig. 7c, d.

The homogeneous nature of Cape Cod deposits generates relatively “weak” anomalous
diffusion, as shown by the first three integer order moments. The measurement noise in
mobile mass conceals any possible decrease of mass. The mean and variance of plumes can
also be fitted reasonably well by the classical 2nd-order ADE. The higher order moments
including skewness and kurtosis, however, distinguish clearly the anomalous nature from
Gaussian statistics (see Fig. 7c, d).

Further prediction of the bromide plume shows the superiority of the TFADE-Mobile
model (8) over the classical ADE (Fig. 8). The leading and trailing tails of bromide plumes
are apparently heavier than the ones predicted by a Gaussian model, confirming the large
kurtosis predicted by model (8) and shown in Fig. 7d.

The above applications support the exponential truncation of Lévy process. There are
other ways to temper a Lévy stable density, such as the power-law truncation [15, 57], the
damped Lévy flights (Lévy flights in velocity (phase) space with non-linear friction) [14],
and the confined Lévy flights (i.e., the flights in potential wells, see [12, 13]). Rosiński [52]
also showed that, tempered stable distributions admit parametrization similar to stable dis-
tributions, and the change of measure on the probability space results in a large class of
tempered stable Lévy processes. We will compare the truncation of these physical models
to actual truncation observed in hydrology problems in a future study.
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Fig. 8 The measured (symbols) versus the predicted (lines) Cape Cod bromide snapshots using the
TFADE-Mobile model (8). Model parameters are fitted in Fig. 7. The classical 2nd-order ADE solution
at day 349 (dots) is also listed for comparison

6 Conclusion

Moment formulas are developed for exponentially tempered fractional advection-diffusion
equations. Exact analytical expression can be derived for moments for the original TFADE
model by using the standard, integral transform approach. The extended TFADE models that
capture also the subdiffusive effect have no analytical solutions for moments, but the series
representations of moments can be derived using the asymptotic expansion method.

The derived moments reveal interesting information of tempered anomalous diffusion,
such as the diffusion equation that attracts the tempered anomalous diffusion in the long
time limit. They also help to analyze the early/late time behavior of preasymptotic trans-
port in different phases and the scale of crossover time for asymptotic diffusion to appear,
improving the understanding of tempered anomalous diffusion appearing in a complex en-
vironment.

Numerical approaches are needed to explore spatial moments if the full time evolution
of moments is desirable, or the diffusive process contains complex initial/boundary condi-
tions. Applications in two end-members of alluvial settings show the importance of high
order moments including skewness and kurtosis, in distinguishing preasymptotic transport
from asymptotic diffusion limits. In particular, the truncation parameter λ increases with the
decrease of the variance of hydraulic conductivity, implying a potential link between system
heterogeneity and the tempered stable Lévy process.
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Appendix A: Analytical Solution of Moments for the Original TFADE Model (1)

The analytic solution of the evolution of moments up to the fourth-order for the original
TFADE model (1) is derived here using the integral (Laplace-Fourier) transform approach.
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Taking the Fourier transform (x → k) and Laplace transform (t → s) of the original FPDE
(1), we get the solution for P

ˆ̃
P (k, s) = sγ−1

sγ + V ik − D[l(λ + ik)α + r(λ − ik)α − λα − ikαλα−1θ ] P̂ (k,0), (33)

where ˆ̃
P is both the Fourier transform and the characteristic function of P , and P̂ (k,0) is

the initial density. The n-th order moment about the origin of P , denoted as μn, is related to
P̂ via:

dn ˆ̃
P (k, s)

dkn

∣∣∣∣
k=0

= (−i)nμ̃n(s). (34)

Note here the Laplace transform and its inverse operation are not needed if the Fourier
transform itself can solve the differential equation. Combining (33) and (34) and taking
inverse Laplace transform, we obtain the zeroth-order to fourth-order moments about the
origin in real time:

μ0(t) = 1, (35a)

μ1(t) = V tγ

Γ (γ + 1)
, (35b)

μ2(t) = 2V 2t2γ

Γ (2γ + 1)
+ Dα(α − 1)λα−2tγ

Γ (γ + 1)
, (35c)

μ3(t) = 6V 3t3γ

Γ (3γ + 1)
+ 6V Dα(α − 1)λα−2t2γ

Γ (2γ + 1)
− Dα(α − 1)(α − 2)λα−3θtγ

Γ (γ + 1)
, (35d)

μ4(t) = 24V 4t4γ

Γ (4γ + 1)
+ 36V 2Dα(α − 1)λα−2t3γ

Γ (3γ + 1)
+ b1t

2γ

Γ (2γ + 1)
+ b2t

γ

Γ (γ + 1)
, (35e)

where the parameter b1 = 6[Dα(α − 1)λα−2]2 − 8V Dα(α − 1)(α − 2)λα−3θ and b2 =
Dα(α − 1)(α − 2)(α − 3)λα−4. Here we assume that (1) the initial mass is 1 (i.e., nor-
malization), and (2) there is no other source or sink in the system.

Spatial moments can then be derived given the relationship between central moments and
moments about the origin. Hence we obtain the particle total mass M , mean E and variance
σ 2 of particle displacements, skewness S and kurtosis κ (note M and E are equal to the
zeroth-order and first-order moments around the origin, respectively):

M(t) = 1, (36a)

E(t) = V tγ

Γ (γ + 1)
, (36b)

σ 2(t) = V 2t2γ

[
2

Γ (2γ + 1)
− 1

(Γ (γ + 1))2

]
+ Dα(α − 1)λα−2tγ

Γ (γ + 1)
, (36c)

S(t) =
{
V 3t3γ

[
6

Γ (3γ + 1)
− 6

Γ (2γ + 1)Γ (γ + 1)
+ 2

(Γ (γ + 1))3

]

+ V Dα(α − 1)λα−2t2γ

[
6

Γ (2γ + 1)
− 3

(Γ (γ + 1))2

]
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− Dα(α − 1)(α − 2)λα−3θtγ
1

Γ (γ + 1)

}
[σ 2(t)]−3/2 (36d)

κ(t) =
{
V 4t4γ

[
24

Γ (4γ + 1)
− 24

Γ (3γ + 1)Γ (γ + 1)
+ 12

Γ (2γ + 1)(Γ (γ + 1))2

− 3

(Γ (γ + 1))4

]
+ V 2Dα(α − 1)λα−2t3γ

[
36

Γ (3γ + 1)
− 24

Γ (2γ + 1)Γ (γ + 1)

+ 6

(Γ (γ + 1))3

]
+ Dα(α − 1)λα−2t2γ

[
6Dα(α − 1)λα−2

Γ (2γ + 1)
− 8V (α − 2)λ−1θ

Γ (2γ + 1)

− 4V (α − 2)λ−1θ

(Γ (γ + 1))2

]
− Dα(α − 1)(α − 2)(α − 3)λα−4tγ

Γ (γ + 1)

}
[σ 2(t)]−2 − 3. (36e)

Formula (36b) shows that the truncation of large jumps does not alter the mean shift, since
the tempered stable Lévy motion has a mean zero (captured by the term Dαλα−1∂P/∂x in
model (1)). The mean and variance shown by (36b) and (36c) are consistent to the ones
provided by Cartea and del-Castillo-Negrete [10]. Also note that the skewness coefficient θ

affects only the moments higher than the second order.
When γ = 1 and θ = 1, the original TFADE (1) reduces to the simplified TFADE derived

by Baeumer and Meerschaert [2]:

∂P (x, t)

∂t
= −V

∂P (x, t)

∂x
+D

{
e−λx ∂α[eλxP (x, t)]

∂xα
−αλα−1 ∂P (x, t)

∂x
−λαP (x, t)

}
, (37)

which contains only the space fractional derivative. The corresponding moments (36) reduce
to

M(t) = 1, (38a)

E(t) = V t, (38b)

σ 2(t) = Dα(α − 1)λα−2t, (38c)

S(t) = 2 − α

[Dα(α − 1)]1/2λα/2
t−

1
2 , (38d)

κ(t) = (α − 2)(α − 3)

Dα(α − 1)λα
t−1. (38e)

For this simplified TFADE, the variance increases linearly with time, just as any other Lévy
process with finite second moment. This is because Xt is the sum of t independent and
identically distributed random variables, and variances of independent random variables
add. A similar formula σ 2(t) ∼ Dλα−2t was found by Koponen [33]. The higher order mo-
ments, including skewness and kurtosis, distinguish the preasymptotic diffusion from nor-
mal diffusion. Here the skewness decreases as t−1/2, while the kurtosis decreases relatively
faster. The rate at which the two moments approach zero reflects the speed at which tem-
pered anomalous diffusion converges to normal diffusion. In particular, formulas (38d) and
(38e) show that the combination of D, α and λ affects the rate of convergence. Only when
t � (2−α)

α(α−1)
D−1λ−α will the skewness and kurtosis be small enough to approximate Gaussian

statistics. This is consistent with the conclusion obtained by Del-Castillo-Negrete [18], who
showed that the crossover time τc for Gaussian behavior to appear scales as τc ∼ D−1λ−α .
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When t → ∞, model (37) is asymptotically Gaussian, and the corresponding formula
(38) reduces to the moments for the classical 2nd-order advection-diffusion equation

∂C(x, t)

∂t
= −V

∂C(x, t)

∂x
+ 1

2
Dα(α − 1)λα−2 ∂2C

∂x2
. (39)

It identifies the classical diffusion equation that attracts the tempered anomalous diffusion
in the long time limit.

Appendix B: Tauberian Theorem to Derive the Early and Late Time Approximations
of Moments for the Extended TFADE

As an illustration, Karamata’s Tauberian theorem [20] is applied here to derive the early and
late time approximations for variance for the TFADE-Total model (7).

Denote μ2,T (t) as the second-order moment about the origin in real time. The following
integral defines a new function W(t)

W(t) =
∫ t

0
μ2,T (r)dr. (40)

Karamata’s theorem (see Theorem 3, p. 445 in [20]) shows that

μ̃2,T (s) ∼ Bs−ξ as s → 0 ⇐⇒ W(t) ∼ Btξ

Γ (ξ + 1)
as t → ∞, (41)

where the parameter B > 0, ξ ≥ 0, and the symbol “∼” between two functions means that
the ratio f1/f2 → 1 (where f1 and f2 denote the function before and after “∼”, respectively).

Based on (11), one can write

μ̃2,T (s) = 2V 2ϑ

s(s + βsγ )2
+ Dϑα(α − 1)λα−2

s(s + βsγ )

= 2V 2ϑ

β2s2γ+1(β−1s1−γ + 1)2
+ Dϑα(α − 1)λα−2

βsγ+1(β−1s1−γ + 1)

∼ 2V 2ϑ

β2
s−(2γ+1) + Dϑα(α − 1)λα−2

β
s−(γ+1) (42)

as s → 0. The statement (41) shows that

W(t) ∼ 2V 2ϑ

β2

t2γ+1

Γ (2γ + 2)
+ Dϑα(α − 1)λα−2

β

tγ+1

Γ (γ + 2)
as t → ∞. (43)

Hence the late time approximation for μ2,T (t) is

μ2,T (t) = dW(t)

dt
∼ 2V 2ϑ

β2

t2γ

Γ (2γ + 1)
+ Dϑα(α − 1)λα−2

β

tγ

Γ (γ + 1)
as t → ∞. (44)

To derive the early time approximation for μ2,T (t), another version of Karamata’s theo-
rem is needed:

μ̃2,T (s) ∼ Bs−ξ as s → ∞ ⇐⇒ W(t) ∼ Btξ

Γ (ξ + 1)
as t → 0. (45)
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We can rewrite (11):

μ̃2,T (s) = 2V 2ϑ

s3(1 + βsγ−1)2
+ Dϑα(α − 1)λα−2

s2(1 + βsγ−1)

∼ 2V 2ϑ s−3 + Dϑα(α − 1)λα−2s−2 (46)

as s → ∞. The theory (45) gives W(t)

W(t) ∼ V 2ϑ
t3

3
+ Dϑα(α − 1)λα−2 t2

2
as t → 0. (47)

The early time approximation for μ2,T (t) therefore is

μ2,T (t) ∼ V 2ϑt2 + Dϑα(α − 1)λα−2t as t → 0. (48)

Following the same procedure from (40) to (48), one can derive that

μ1,T (t) ∼ V ϑt as t → 0, (49a)

μ1,T (t) ∼ V ϑβ−1tγ
1

Γ (γ + 1)
as t → ∞. (49b)

Formula (10) reveals that

μ0,T (t) = ϑ, (50)

which is an exact solution valid for all t . By combining (48), (49a) and (50), the early time
approximation for variance for the TFADE-Total model (7) is then obtained

σ 2
T (t) ∼ Dα(α − 1)λα−2t as t → 0, (51)

which confirms the formula (15a). Similarly, by combining (44), (49b) and (50), one obtains
the late time approximation for variance for model (7)

σ 2
T (t) ∼ V 2

β2
t2γ

[
2

Γ (2γ + 1)
− 1

(Γ (γ + 1))2

]
+ Dα(α − 1)λα−2

β

tγ

Γ (γ + 1)
as t → ∞,

(52)
which confirms the formula (15b).

Appendix C: Eulerian Approach to Solve the TFADE-Total Model (7)

We illustrate the Eulerian method using the TFADE-total model (7). First, discretize (7)
using an implicit finite difference scheme

Cn+1
i − Cn

i

�t
+ β

(�t)γ

n+1∑
k=0

[gkC
n−(k−1)
i ]

= −V
Cn+1

i − Cn+1
i−1

�x
+ D

{
e−λxi

1

hα

i+1∑
j=0

[fje
λxi−(j−1)Cn+1

i−(j−1)]

− λαCn+1
i − αλα−1 Cn+1

i − Cn+1
i−1

�x

}
+ β(tn)

−γ

Γ (1 − γ )
C0

i , (53)
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where the one-shift Grünwald approximation [2] is used to approximate both the time (γ -
order) and space (α-order) fractional derivatives. The Riemann-Liouville fractional deriv-
ative in time is used here, so that the shifted Grünwald approximation can be applied [2].
Here gk and fj are Grünwald weights. Also, �t and �x (note �x = h) are time and space
discretization sizes, respectively.

The above formula can be built for each node, resulting in a linear system of equations
ACn+1 = Cn + �tSn+1 where

CL = [CL
0 ,CL

1 ,CL
2 , . . . ,CL

K ]T ; L = n or n + 1 denotes the time step

and A = [Ai,j ] is the matrix of coefficients. These coefficients, for i = 1, . . . ,K − 1 and
j = 1, . . . ,K − 1 are defined as follows:

Ai,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, when j ≥ i + 2,
−�t

hα Df0e
λh, when j = i + 1,

1 + β 1
(�t)γ−1 g0 + V �t

h
− �tD[ 1

hα f1 − λα − αλα−1 1
h
], when j = i,

−V �t
h

− �tD[ 1
hα f2e

−λh + αλα−1 1
h
], when j = i − 1,

−�tD 1
hα fi−(j−1)e

−λ(i−j)h, when j ≤ i − 2

while A0,0 = 1, A0,j = 0 for j = 1, . . . ,K , AK,K = 1, AK,K−1 = −1, and AK,j = 0 for
j = 0, . . . ,K − 2.

Here we explore the stable criterion of the above scheme using the Greschgorin the-
orem [29]. The eigenvalues of the matrix A are in the disks centered at Ai,i with radius

ri = ∑K

k=0,k 
=i Ai,k . Firstly, we have

Ai,i − ri = 1 + β
1

(�t)γ−1
+ �tDλα − �tD

1

hα

i+1∑
j=0

[fi−j+1e
−λ(i−j)h]. (54)

To meet the criterion of Ai,i − ri > 1, the following formula must be true:

β
1

(�t)γ−1
+ �tDλα − �tD

1

hα

i+1∑
j=0

[fi−j+1e
−λ(i−j)h] > 0, (55)

which requires

�t < β1/γ

[
1

hα
Deλh − Dλα

]−1/γ

. (56)

Secondly, we have

Ai,i + ri = 1 + β
1

(�t)γ−1
+ 2V

�t

h
+ 2�tDαλα−1 1

h
+ �tDλα − �tD

1

hα
f1

+ �t

hα
Df0e

λh + �t

hα
Df2e

−λh + �tD
1

hα

i−2∑
j=0

[fi−j+1e
−λ(i−j)h]. (57)

Since the Grünwald weights f0 = 1, f1 = −α (so −2 < f1 < −1), f2 = α(α − 1)/2 > 0,
and fi > 0 for i > 2, we have all the terms on the RHS of (57) larger than zero. Therefore,

Ai,i + ri > 1. (58)
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Fig. 9 Eulerian solutions (lines) versus Lagrangian solutions (symbols). (a) The density of the tempered
α-stable, with the truncation parameter λ = 0.0001 and various scale indexes α. (b) Snapshots of particle
plumes governed by the TFADE-Total model (7) (Total phase) and the TFADE-Mobile model (8) (mobile
phase). Parameters are: γ = 0.5, β = 0.5, α = 1.3, V = 2, D = 2, λ = 0.1, and t = 1. The immobile phase
concentration is the difference between the total and mobile concentrations

Hence the magnitude of eigenvalues of A are no less than 1 if the time step �t is small
enough to meet the criterion of (56). The spectral radius of the inverse matrix A−1 is no
larger than 1 and any error in wn+1 is not magnified. Hence the above Eulerian numerical
scheme is conditionally stable.

The TFADE-Mobile model (8) can be solved following the above scheme. By deleting
the last term on the RHS of (53), the resultant finite difference scheme is also conditionally
stable with the same stability criterion.

The above Eulerian scheme has been used extensively to cross verify the Lagrangian
solutions developed in Sect. 4. A few examples are shown in Fig. 9. Figure 9a shows the
tempered stable density, which is equal to the solution of the simplified TFADE (37) with
V = 0, D = 1, and t = 1. Figure 9b shows the simulated particle snapshots at all phases,
where the particle plume in the mobile phase moves relatively faster than the plume in the
immobile phase. A general match for solutions can be found for the two different numerical
solvers.
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